NASA-CR-205329

Software Development Technologies for Reactive,
Real-Time, and Hybrid Systems

1996 Progress Report
NASA grant NAG2-892 W W

P.I. : Professor Zohar Manna
Computer Science Department
Stanford University
Stanford, CA. 94301-9045

Objective

The research is directed towards the design and implementation of a com-
prehensive deductive environment for the development of high-assurance
systems, especially reactive (concurrent, real-time, and hybrid) systems. Re-
active systems maintain an ongoing interaction with their environment, and
are among the most difficult to design and verify. The project aims to pro-
vide engineers with a wide variety of tools within a single, general, formal
framework in which the tools will be most effective. The entire developrhent
process is considered, including the construction, transformation, validation,
verification, debugging, and maintenance of computer systems. The goal is
to automate the process as much as possible and reduce the errors that
pervade hardware and software development.

Approach

The on-going research proceeds simultaneously on two fronts: theoretical in-
vestigations and incremental implementation. Several parts of the proposed
toolkit can be realized only after developing the necessary theoretical basis.

The formal framework is based on the generic computational model of
Transition Systems. specialized to Fair Transition Systems, Timed Transi-
tion Systems, and Phase Transition Systems for the classes of concurrent,
real-time, and hybrid systems, respectively. These models cover both hard-
ware and software systems, and underlie all the proposed languages and

a



methods. The most complex of these models, phase transition systems,
combines discrete transition systems with continuous processes whose pa-
rameters are controlled by differential equations.

On the implementation front, the basic verification environment provides
a unique combination of tools, and is being used as the basis for prototype
components that test and validate new methods and approaches. A soft-
ware or hardware designer can communicate with the deductive environment
through two classes of languages: system components can be described in a
graphical language that extends Statecharts; system specifications and in-
terfaces are described in Temporal Logic, extended to deal with real-time
and continuous change.

Progress for 1996
Our research in 1996 focused on the following areas:

¢ Combining Deductive and Algorithmic Verification: The two
main approaches to verifying temporal properties of reactive systems
are deductive verification on the one hand, and model checking on the
other. (We summarize these in [SUM96b).) In the deductive approach,
the validity of a given temporal property over a given program is re-
duced to the general validity of a set of first-order formulas, through
the use of a given set of verification rules. In model checking, the
state space of the program is systematically explored in search for
a computation that violates the property being verified, until such a
counterexample is found or it is shown that it cannot exist.

Model checking procedures are usually automatic, while deductive ver-
ification often relies on user interaction to identify suitable lemmas and
auxiliary assertions. However, model checking is usually applicable
only to systems with a finite, fixed number of states, while the de-
ductive approach can verify infinite-state systems and parameterized
finite-state systems of arbitrary size.

In [SUMO96a], we present an extension of classical tableau-based model
checking procedures to the case of infinite-state systems, using deduc-
tive methods in an incremental construction of the behavior graph.
Logical formulas are used to represent infinite sets of states in an ab-
straction of this graph, which is repeatedly refined in the search for
a counterexample computation, ruling out large portions of the graph



before they are expanded to the state-level. This can lead to large
savings, even in the case of finite-state systems. Only local conditions
need to be checked at each step, and previously proven properties can
be used to further constrain the search. This framework is currently
being extended to incorporate well-founded orders and progress mea-
sures as well.

In [dAM96] we present a methodology for the verification of tempo-
ral properties of systems based on the gradual construction and al-
gorithmic checking of fairness diagrams. These are abstractions of
the system and its progress properties, and have a simple graphical
representation. A proof of a temporal property consists of a chain
of diagram transformations, starting from a diagram representing the
original system and ending with a diagram that either corresponds di-
rectly to the specification, or that can be shown to satisfy it by purely
algorithmic methods. Each diagram transformation captures a natu-
ral step of the gradual process of system analysis and proof discovery.
In [dAKM97] we extend this approach to hybrid systems (see below).

Hierarchical Verification Diagrams: Graphical formalisms can
facilitate the task of guiding and understanding a deductive proof.
Verification Diagrams, introduced by Manna and Pnueli, provide a
graphical representation of the direct proof of temporal properties.
We previously extended this framework to arbitrary temporal formu-
las, using generalized verification diagrams. In [BMS96], we present
a formal framework that allows the combination of multiple diagrams
into one proof, thus facilitating incremental proof construction of com-
plex systems and properties. In addition, we extend the applicability of
verification diagrams to properties specified by existentially quantified
temporal formulas, which are strictly more expressive than quantifier-
free temporal formulas.

Graphical Formalisms: In [BAAM*96] we summarize the common
features of verification diagrams, fairness diagrams, and deductive
model checking. They all can describe and verify infinite-state systems
using a finite representation which can be incrementally constructed,
where verification conditions are local and where global properties can
be checked algorithmically. Diagrams (or sequences of diagrams) are
formal proof objects, which succinctly represent a set of verification
conditions that replaces a combination of textual verification rules.



The graphical nature of diagrams makes them easier to construct and
understand than text-based proofs and specifications.

Real-Time Systems: The current release of our STeP systems (see

below) supports the verification of real-time systems, modeled as clocked
transition systems. We are collaborating with Dr. Jonathan Ostroff

of York University, Canada, who is using STeP in the compositional

verification of real-time systems. Dr. Ostroff visited our group and

is providing feedback on the application of the system to large-scale,

compositional real-time verification [ON96, Ost97].

Hybrid Systems: In [dAKM97], we present a methodology for the
verification of temporal properties of hybrid systems. The method-
ology is based on the deductive transformation of hybrid diagrams,
which represent the system and its properties, and which can be algo-
rithmically checked against the specification. This check either gives
a positive answer to the verification problem, or provides guidance for
the further transformation of the diagrams. The resulting methodol-
ogy is complete for quantifier-free linear-time temporal logic.

We have also continued our collaboration with Prof. Tom Henzinger
(see Cornell/Berkeley subcontract below).

Probabilistic System Verification: In [dA97], we present a method-
ology for the verification of performance and reliability properties of
discrete real-time systems. The methodology relies on a temporal logic
that can express bounds on the probability of events and on the av-
erage time between them. The semantics of the logics is defined with
respect to timed systems that exhibit both probabilistic and nonde-
terministic behavior. We developed model checking algorithms for the
algorithmic verification of the specifications.

Deductive Support (STeP): We have continued work on our imple-
mentation testbed, the Stanford Temporal Prover (STeP) [BBC*96],
which combines deductive methods with algorithmic techniques to ver-
ify linear-time temporal logic specifications of reactive and real-time
systems. STeP uses verification rules, verification diagrams, automat-
ically generated invariants [BBM97], model checking, and a collection
of decision procedures, to verify finite- and infinite-state systems.

An initial version of STeP (version 1.1) has been released [BBC*95],
and is being used for educational and research purposes in over 30 sites



around the world. At Stanford, STeP and its deductive components
are being used in courses on formal verification and introductory logic
for computer science. Information on obtaining the system is available
by sending e-mail to step-request@CS.Stanford.EDU. See also

http://theory.stanford.edu/ zm/step.html.

Version 1.2, ported to the latest relase of SML of New Jersey (109.x),
will be available soon, including a Linux version of the system.

Improvements done in 1996 include: stronger decision procedures:
rules for modular verification; visual representation of proof searches:
support for the verification of real-time systems; and improved inter-
faces for the non-clausal resolution-based theorem proving component.

Experimental features of STeP developed in 1996 include: a prelimi-
nary implementation of deductive model checking [SUM96a] and au-
tomata for monadic second order logic, which can automatically verify
a class of parameterized programs. More powerful deductive support,
integrating decision procedures and first-order reasoning, has been de-
veloped and implemented, in collaboration with Dr. Mark Stickel at
SRI International [BSU96] (see below).

A Java implementation of Manna and Waldinger’s Deductive Tableau
proof system, based on non-clausal resolution, was developed this year.
This tool was used in teaching CS157 (Introduction to Logic and Au-
tomated Reasoning) at Stanford. It will be available for educational
use, and will serve as the basis for further work in deductive synthesis.

¢ Industrial collaboration.: We have continued our contact with re-
searchers from SUN and Intel. STeP has been used to verify circuits
proposed by Intel and SUN. We have initiated further industrial col-
laborations (e.g. Yago Systems) that will explore how our deductive
technology can be applied to complex hardware designs, which will
drive new research and development.

SRI subcontract

¢ Deductive Support: In collaboration with Dr. Mark Stickel at SRI,
we developed a procedure for proving the validity of first-order for-
mulas in the presence of decision procedures for an interpreted subset



of the language [BSU96). The procedure is designed to be practi-
cal: formulas can have large complex boolean structure, and include
structure sharing in the form of let- expressions. We accommodate
different kinds of decision procedures, from those that can suggest re-
futing instantiations to those that cannot. The procedure has been
implemented as part of STeP. Although the procedure is incomplete,
it is able to eliminate the need for user interaction in the proofs of
many verification conditions.

¢ Program Synthesis: In collaboration with Dr. Richard Waldinger,
recent efforts have been devoted to the synthesis of programs which
have side effects as part of their intended behavior. As an applica-
tion domain for the synthesis of imperative programs, we have been
constructing pictures, graphical displays, and animated cartoons from
declarative specifications. This has many potential applications, in-
cluding the automated development of visual displays to illustrate the
results of computations.

The declarative specifications can describe the entities (geometric fig-
ures, photographs, pieces of text, and even film clips) and relationships
between them (left and right, bigger and smaller). Explicit states allow
the description of changes in the configuration.

Cornell/Berkeley subcontract

On January 1, 1996. Prof. Henzinger moved from Cornell to the University
of California at Berkeley. There we continued to develop the theory and
improve the practice of model checking for real-time and hybrid systems.

¢ Theory of real-time model checking: We developed an on-the-fly
algorithm, which is the first method for real-time model checking that
is optimal with respect to both time and space requirements [HKV96].
We also discovered a reduction of real-time model checking to untimed
model checking, which dramatically increases the applicability of ex-
isting tools [KH97].
In a recent development, we propose and study a new formal model for
real-time and hybrid system which is more robust than previous ap-
proaches [GHJ97]. In particular, if a robust timed automaton accepts
a real-time sequence of inputs, then it must also accept all sequences
where the input times are slightly perturbed.



¢ Theory of hybrid model-checking: We classified hybrid automata
as to whether they induce finite bisimilarity, similarity, or language-
equivalence quotients [HK96]. This classification gives rise to a struc-
tural explanation of previous decidability results and to improved ver-
ification algorithms [Hen96).

e Practice of hybrid model checking: After switching from formula-
based to polyhedra-based algorithms, we have been steadily improving
HyTech, our symbolic model checker for hybrid automata. The current
release, HyTech 1.04, is available at

http://www.eecs.berkeley.edu/"tah/.

The improvements are driven by case studies that involve parameter-
synthesis tasks and nonlinear behavior [HW96].

Future Research (1997)

Our research plans for the following vear include:

¢ Integration of Techniques: Further integration of deductive and
algorithmic techniques. We will examine more closely how automata-
theoretic techniques can be used in the general case of infinite-state
systems. ’

* Graphical Formalisms: Although our graphical formalisms are in-
teractive in nature, we want to identify the areas where automation
can be most useful, to minimize the necessary interaction.

We also plan to develop a uniform graphical environment, implemented
in Java, which can be used to apply the various graphical formalisms
we have developed, using a common set of tools.

¢ Hybrid Systems: Develop a practical graphical environment for the
verification of hybrid systems. This includes exploring further the com-
bination of the deductive and algorithmic approaches in the context
of hybrid systems, and using the graphical toolkit mentioned above.

* Modular Verification: Develop practical techniques that enable the
modular verification of concurrent and real-time systems. This in-
cludes, for example, finding efficient methods for determining the va-
lidity of complex temporal verification conditions.

-}



e Verification of Object-Oriented Programs: Apply the temporal
logic methodology to the verification of object-oriented systems: in
particular, identify compositional and modular verification techniques
that can handle and exploit the abstraction, encapsulation and spe-
cialization features of object-oriented languages.

¢ Hardware-Specific Applications: Adapt and specialize the tech-
niques used in STeP to the special case of hardware systems, finding
methods for generating hardware invariants, and developing special-
ized deductive support for finite-state systems.

¢ Program Synthesis: Identify new practical applications of deductive
program synthesis, and develop a synthesis environment that can use
the deductive tools already embodied in our STeP system.

¢ Model checking for Hybrid and Real-time Systems: Continue
to extend the practical applicability of our model checking methods
for hybrid and real-time systems, following the insights provided by
our recent theoretical results.

Publications (1996)

The following references are publications supported by this grant in 1996.
Selected entries, marked with «, are included with this report. ‘

[BBC*96] N. S. Bjorner, A. Browne, E. Chang, M. Colén, A. Kapur,
Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: Deductive-algorithmic ver-
ification of reactive and real-time systems. In Proc. 8" Intl. Conference
on Computer Aided Verification, volume 1102 of LNCS, pages 415-418.
Springer-Verlag, July 1996. *

[BBM97] N.S. Bjorner, A. Browne, and Z. Manna. Automatic generation
of invariants and intermediate assertions. Theor. Comp. Seci., 1997. To
appear. *

[BAAM*96] A. Browne, L. de Alfaro, Z. Manna, H.B. Sipma, and T.E.
Uribe. Diagram-based formalisms for the verification of reactive systems.
In CADE-14 Workshop on Visual Reasoning, 1996. *

[BMS96] A. Browne, Z. Manna, and H.B. Sipma. Hierarchical verification
using verification diagrams. In Second Asian Computing Science Conf.,
volume 1179 of LNCS, pages 276-286. Springer- Verlag, December 1996.



[BSU96] N.S. Bjorner, M.E. Stickel, and T.E. Uribe. A practical combina-
tion of first-order reasoning and decision procedures. Computer Science
Department, Stanford University. Submitted. December 1996.

[dA97] L. de Alfaro. Temporal logics for the specification of performance
and reliability. In 14th Symp. on Theoretical Aspects of Computer Science,
February 1997. *

[dAAKM97] L. de Alfaro, A. Kapur, and Z. Manna. Hybrid diagrams: A
deductive-algorithmic approach to hybrid system verification. In 14th
Symp. on Theoretical Aspects of Computer Science, February 1997. *

[dAM96] L. de Alfaro and Z. Manna. Temporal verification by diagram
transformations. In Proc. 8" Intl. Conference on Computer Aided Verifi-
cation, volume 1102 of LNCS, pages 287-299, July 1996. *

[GHJ97] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed au-
tomata. In Proceedings of the First International Workshop on Hybrid and
Real-time Systems (HART), LNCS. Springer-Verlag, 1997. To appear.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proc. 11th
IEEE Symp. Logic in Comp. Sci., pages 278-292. IEEE Computer Society
Press, 1996.

[HK96] T.A. Henzinger and P.W. Kopke. State equivalences for rectan-
gular hybrid automata. In Seventh International Conference on Concur-
rency Theory (CONCUR), volume 1119 of LNCS, pages 530-545. Springer-
Verlag, 1996.

[HKV96] T.A. Henzinger, O. Kupferman, and M.Y. Vardi. A space-efficient
on-the-fly algorithm for real-time model checking. In Seventh International
Conference on Concurrency Theory (CONCUR), LNCS, pages 514-529.
Springer-Verlag, 1996.

[(HW96] T.A. Henzinger and H. Wong-Toi. Using HYTECH to synthesize
control parameters for a steam boiler. In Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, vol-
ume 1165 of LNCS. Springer-Verlag, 1996.

(KH97] O. Kupferman and T.A. Henzinger. From quantity to quality. In
Proceedings of the First International Workshop on Hybrid and Real-time
Systems (HART), LNCS. Springer-Verlag, 1997. To appear.



[SUM96a] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model check-
ing. In Proc. 8" Intl. Conference on Computer Aided Verification, volume

1102 of LNCYS, pages 208-219. Springer-Verlag, July 1996. *

[SUM96b] H.B. Sipma, T.E. Uribe, and Z. Manna. Model checking and de-
duction for infinite-state systems. Computer Science Department, Stan-
ford University. Submitted, December 1996.

Other References:

[BBC*95] N.S. Bjorner, A. Browne, E. Chang, M. Colén, A. Kapur,
Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: The Stanford Tem-
poral Prover, User’s Manual. Technical Report STAN-CS-TR-95-1562,
Computer Science Department, Stanford University, November 1995. «

[ON96] J.S. Ostroff and H.K. Ng. Verifying real-time systems using un-
timed tools. In Proc. Third AMAST Workshop on Real-Time Systems,

pages 132-146, March 1996.

[Ost97] J.S. Ostroff. A visual toolset for the design of real-time discrete
event systems. IEEE Trans. on Control Systems Technology, May 1997.

To appear.

10



